Towards autonomous DNA-based nanodevices

نویسنده

  • Tim Liedl
چکیده

Molecular recognition, programmability, self-assembling capabilites and biocompatibility are unique features of DNA. The basic approach of DNA nanotechnology is to exploit these properties in order to fabricate novel materials and structures on the nanometer scale. This cumulative dissertation deals with three aspects of this young research area: fast analysis, autonomous control of functional structures, and biocompatible autonomous delivery systems for nanoscale objects. 1. At low temperatures and under favorable buffer conditions, two complementary DNA strands will form a double-helical structure in which the bases of the two strands are paired according to the Watson-Crick rules: adenine bases bind with thymine bases, guanine bases with cytosine bases. The melting temperature TM of a DNA duplex is defined as the temperature at which half of the double strands are separated into single strands. The melting temperature can be calculated for DNA strands of known sequences under standard conditions. However, it has to be determined experimentally for strands of unknown sequences and for applications under extreme buffer conditions. A method for fast and reliable determination of DNA melting temperatures has been developed. Stable gradients of the denaturing agent formamide were generated by means of diffusion in a microfluidic setup. Formamide lowers the melting temperature of DNA and a given formamide concentration can be mapped to a corresponding virtual temperature along the formamide gradient. Differences in the length of complementary sequences of only one nucleotide as well as a single nucleotide mismatch can be detected with this method, which is of great interest for the detection of sequence mutations or variations such as single nucleotide polymorphisms (SNPs). 2. Knowledge of the stability of DNA duplexes is also of great importance for the construction of DNA-based nanostructures and devices. Conformational changes occuring in artificially generated DNA structures can be used to produce motion on the nanometer scale. Usually, DNA devices are driven by the manual addition of fuel molecules or by the periodic variation of buffer conditions. One prominent example of such a conformational change is the formation of the so-called i-motif, which is a folded four-stranded DNA structure characterized by noncanonical hemiprotonated cytosine-cytosine base-pairs. In order to achieve controlled autonomous motion, the oscillating pH-value of a chemical oscillator has been employed to drive the i-motif periodically through its conformational states. The experiments were conducted with the DNA switch in solution and attached to a solid substrate and constitute the first example of DNA-based devices driven autonomously by a chemical non-equilibrium reaction. 3. Finally, a DNA-crosslinked and switchable polyacrylamide hydrogel is introduced, which is used to trap and release fluorescent colloidal quantum dots in response to externally applied programmable DNA signal strands. Trapping and release of the nanoparticles is demonstrated by studying their diffusion properties using single molecule fluorescence microscopy, single particle tracking and fluorescence correlation spectroscopy. Due to the biocompatibility of the polymerized acrylamide and the crosslinking DNA strands, such

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title of Project:Development of Molecular Robotics based on DNA Nanoengineering

Keyword:Autonomous Decentralized Systems, DNA Nanoengineering, Molecular robotics 【Purpose and Background of the Research】 The new field called “DNA Nanoengineering” is focused on designing various molecular devices out of synthesized DNA. It emerged at the intersection of computer science, biochemistry, material science, and engineering. As the result of recent efforts, DNA has established as ...

متن کامل

Molecular Devices AUnidirectional DNAWalker That Moves Autonomously along a Track**

Amajor challenge in nanotechnology is to precisely transport a nanoscale object from one location on a nanostructure to another location along a designated path. The successful construction of self-assembled DNA nanostructures provides a solid structural foundation to meet this challenge. DNA, with its immense information-encoding capacity and welldefinedWaston–Crick complementarity, has been e...

متن کامل

Binary control of enzymatic cleavage of DNA origami by structural antideterminants

Controlling DNA nanostructure interaction with protein is essential in developing nanodevices with programmable function, reactivity, and stability for biological and medical applications. Here, we show that the sequence-specific action of restriction endonucleases towards sharp triangular or rectangular DNA origami exhibits a novel, binary 'on/off' behaviour, as canonical recognition sites are...

متن کامل

Enzyme-Operated DNA-Based Nanodevices

Functional molecular nanodevices and nanomachines have attracted a growing interest for their potential use in life science and nanomedicine. In particular, due to their versatility and modularity DNA-based nanodevices appear extremely promising. However, a limitation of such devices is represented by the limited number of molecular stimuli and cues that can be used to control and regulate thei...

متن کامل

Electronic control of DNA-based nanoswitches and nanodevices.

Here we demonstrate that we can rationally and finely control the functionality of different DNA-based nanodevices and nanoswitches using electronic inputs. To demonstrate the versatility of our approach we have used here three different model DNA-based nanoswitches triggered by heavy metals and specific DNA sequences and a copper-responsive DNAzyme. To achieve electronic-induced control of the...

متن کامل

Electronic control of DNA-based nanoswitches and nanodevices† †Electronic supplementary information (ESI) available: Experimental procedures. See DOI: 10.1039/c5sc03694a Click here for additional data file.

Here we demonstrate that we can rationally and finely control the functionality of different DNA-based nanodevices and nanoswitches using electronic inputs. To demonstrate the versatility of our approach we have used here three different model DNA-based nanoswitches triggered by heavy metals and specific DNA sequences and a copper-responsive DNAzyme. To achieve electronic-induced control of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007